Topological Links between Duplex DNA and a Circular DNA Single Strand**

نویسندگان

  • Heiko Kuhn
  • Vadim V. Demidov
  • Maxim D. Frank-Kamenetskii
چکیده

DNA is well known to adopt various topological (and pseudotopological) structures like knots, catenanes, Borromean rings, and pseudorotaxanes.[1] It has long been recognized that DNA topology plays a crucial role in such fundamental biological phenomena as DNA supercoiling and topoisomerization.[2] Another reason for the considerable interest in higher order DNA topology structures stems from the realization that DNA topological and pseudotopological forms may provide stable and sequence-specific targeting of DNA. Accordingly, highly localized DNA detection and precise spatial positioning of various ligands on the DNA scaffold become possible. This may lead to new applications in molecular biotechnology, in gene therapy, and in the emerging field of DNA nanotechnology.[1d, 3] In this connection, one of the promising DNA pseudotopological constructions is the DNA padlock, consisting of a long single-stranded (ss) DNA molecule forming a pseudorotaxane with a short cyclic oligodeoxyribonucleotide (cODN).[4] Another interesting pseudorotaxane-type structure, the sliding clamp, contains a short cODN threaded on doublestranded (ds) DNA.[1c] Notwithstanding the value of the indicated pseudotopological structures for DNA labeling, note that in these constructions the cODN tag is allowed to slide along the target for considerable distances, compromising the precision of spatial positioning of the label. We have assembled a new supramolecular structure, a linked DNA pseudorotaxane, in which part of a cODN appears to be threaded sequence specifically between complementary strands of dsDNA (see Scheme 1 and Figure 1 a). Our structure forms a true topological link as long as the [1] a) A. Merz, R. Schropp, Adv. Mater. 1992, 4, 409 ± 411. b) A. Merz, R. Schropp, J. Lex, Angew. Chem. 1993, 105, 296 ± 298; Angew. Chem. Int. Ed. Engl. 1993, 32, 291 ± 293. c) A. Merz, R. Schropp, E. Dötterl, Synthesis 1995, 795 ± 800. [2] a) A. Merz, S. Graf, J. Electroanal. Chem. 1996, 412, 11 ± 17; b) F. Gassner, S. Graf, A. Merz, Synth. Met. 1997, 87, 75 ± 79. [3] M. Amleida, R. T. Henriques in Handbook of Organic Conductive Molecules and Polymers (Ed:. H. S. Nalwa), Wiley, Chichester, 1997, pp. 87 ± 150; G. C. Papavassiliou, A. Terzis, P. Delhaes Henriques in Handbook of Organic Conductive Molecules and Polymers (Ed.: H. S. Nalwa), Wiley, Chichester, 1997, pp. 151 ± 227. [4] J. A. E. H. van Haare, L. Groenendahl, E. E. Havinga, R. A. J. Janssen, E. W. Meijer, Angew. Chem. 1996, 108, 696 ± 699; Angew. Chem. Int. Ed. Engl. 1996, 35, 638 ± 640. [5] a) P. Bäuerle, U. Segelbacher, K.-U. Gaudl, D. Huttenlocher, M. Mehring, Angew. Chem. 1993, 105, 125 ± 127; Angew. Chem. Int. Ed. Engl. 1993, 32, 76 ± 78; a) P. Bäuerle, U. Segelbacher, A. Maier, M. Mehring, J. Am. Chem. Soc. 1993, 115, 10 217 ± 10223. [6] a) L. L. Miller, Y. Yu, E. Gunic, R. Duan, Adv. Mater. 1995, 7, 547 ± 548; b) Y. Yu, E. Gunic, B. Zinger, L. L. Miller, J. Am. Chem. Soc. 1996, 118, 1013 ± 1018 [7] M. P. Cava, J. P. Parakka, J. A. Jeevarajan, A. S., Jeevarajan, L.D. Kispert, Adv. Mater. 1996, 8, 54 ± 59. [8] a) A. Smie, J. Heinze, Angew. Chem. 1997, 109, 375 ± 379; Angew. Chem. Int. Ed. Engl. 1997, 36, 363 ± 367. b) P. Tschunky, J. Heinze, A. Smie, G. Engelmann, G. Kossmehl, J. Electroanal. Chem. 1997, 433, 223 ± 226. [9] D. D. Graf, R. G. Duan, J. P. Campbell, L. L. Miller, K. R. Mann, J. Am. Chem. Soc. 1997, 119, 5888 ± 5899. [10] P. G. Gassman, W. N. Schenk, J. Org. Chem. 1977, 42, 918 ± 920. [11] R. Chong, P. S. Clezy, Aust. J. Chem. 1967, 20, 935 ± 950. [12] D. Peters, A.-B. Hörnfeldt, S. Gronowitz, J. Heterocycl. Chem. 1991, 28, 526 ± 531. [14] S. Baroni, R. Stradi, J. Heterocycl. Chem. 1980, 17, 1221. [15] J. Kronberger, unpublished results. [16] Crystal sructures: 1a (tetragonal isomorph): C24H24N2O4, Mrˆ 404.47, yellow crystals from MeOH, m.p. 171 ± 172 8C; crystal dimensions: 0.50 0.13 0.13 mm; tetragonal, space group I41cd (No. 110), aˆ 18.831(3), bˆ 18.831(3), cˆ 11.639(2) Š, aˆ 908, Vˆ 4127.3(12) Š3, Zˆ 8, 1calcdˆ 1.302 gcmÿ3 ; F(000)ˆ 1712; mCuˆ 7.3 cmÿ1; qmaxˆ 74.978 ; 4372 determined, 2058 independent, 1918 observed reflexions with (F 2 o > 2sF 2 o ); R1ˆ 0.0260, wR2ˆ 0.0714, GOF (F 2)ˆ 1.083 for 137 parameters, residual electron density 0.026/ÿ 0.092 e Šÿ3. 1b (monoclinic isomorph): C24H24N2O4, Mrˆ 404.47, yellow crystals from MeOH, m.p. 171 ± 172 8C; crystal dimensions: 0.20 0.20 0.09 mm; monoclinic, space group P21/n (No. 14), aˆ 7.943(1), bˆ 10.499(1), cˆ 12.7930(1) Š, aˆ 90, bˆ 107.00(1)8, Vˆ 1020.24(19) Š3, Zˆ 2, 1calcdˆ 1.317 g cmÿ3; F(000)ˆ 428; mCuˆ 7.3 cmÿ1; qmaxˆ 758 ; 2200 determined, 2017 independent, 1662 observed reflections (F 2 o > 2sF 2 o ); R1ˆ 0.0358, wR2ˆ 0.1183, GOF (F 2)ˆ 1.004 for 139 parameters, residual electron density 0.215/ÿ 0.132 eŠÿ3. (1 ́ PF6)2: (C24H24N2O4F6P)2, M/2ˆ 549.43, bluish-black needles, decomp.> 250 8C; crystal dimensions: 0.25 0.08 0.03 mm; triclinic, space group P1Å (No. 2), aˆ 8.36(1), bˆ 11.220(1), cˆ 13.067(1) Š, aˆ 111.78(1), bˆ 96.23(1), gˆ 90.56(1)8 ; Vˆ 1129.8(8) Š3, Zˆ 2, 1calcdˆ 1.444 g cmÿ3; F(000)ˆ 510; mMoˆ 1.021 cmÿ1; qmaxˆ 59.99; 3304 determined 3304 independent, 1813 observed refections (F 2 o > 2sF 2 o ); R1ˆ 0.0496, wR2ˆ 0.1234, GOF (F 2)ˆ 0.908 for 339 parameters, residual electron density 0.297/ÿ 0.216 eŠÿ3. The crystallographic data (excludung structure factors for the structures reported in this paper have been deposited with the Crystallographic Data Centre as supplementary publication nos CCDC-102195 (1a), -102194 (1b), and -102196 (1 PF6)2. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (‡44) 1223-336-033; e-mail [email protected]. ac.uk). [17] H. J.Keller, D. Nöthe, H. Pritzkow, D. Wehe, M. Werner, P. Koch, D. Schweitzer, Mol. Cryst. Liq. Cryst. 1980, 62, 181 ± 199. [18] N. Thorup, G. Rindorf, H. Soling, K. Bechgard, Acta Crystallogr. Ser. B 1981, 37, 1236 ± 1250. [19] J. Fuhrhop, P.Wasser, D. Riesner, D. Mauzerall, J. Am. Chem. Soc. 1972, 94, 1996 ± 8001. [20] K. Kimura, T. Yamazaki, S. Katsumata, J. Phys. Chem. 1971, 75, 1768 ± 1774. [21] W. Geuder, S. Hünig, Tetrahedron 1986, 42, 1665 ± 1677. [22] A. Bondi, J. Chem. Phys.1964, 68, 441 ± 445. [23] A. Petr, L. Dunsch, A. Neudeck, J. Electroanal. Chem. 1996, 412, 153 ± 158. [24] A. Neudeck, L. Kress, J. Electroanal. Chem. 1998, 437, 141 ± 156.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical and Topological Properties of Circular DNA

Several types of circular DNA molecules are now known. These are classified as single-stranded rings, covalently closed duplex rings, and weakly bonded duplex rings containing an interruption in one or both strands. Single rings are exemplified by the viral DNA from phiX174 bacteriophage. Duplex rings appear to exist in a twisted configuration in neutral salt solutions at room temperature. Exam...

متن کامل

RecA protein-facilitated DNA strand breaks. A mechanism for bypassing DNA structural barriers during strand exchange.

RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced ...

متن کامل

An earring for the double helix: assembly of topological links comprising duplex DNA and a circular oligodeoxynucleotide.

Abstract Novel DNA nanostructures, locked pseudorotaxane and locked catenane were assembled through topological linkage of a double-stranded target to a circular oligodeoxyribonucleotide (cODN)(+). The formation of these supramolecular complexes occurs with remarkable sequence specificity and is accomplished via local opening of duplex DNA by a pair of homopyrimidine bis-PNAs. The obtained cO...

متن کامل

Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae does not promote branch migration in vitro.

It has been shown in vitro that Saccharomyces cerevisiae strand exchange protein 1 (Sep1) promotes the transfer of one strand of a linear duplex DNA to a homologous single-stranded DNA circle. Sep1 also has an exonuclease active on DNA and RNA. By using exonuclease III-treated linear duplex DNA with various lengths of single-stranded tail as well as Ca2+ to inhibit the exonuclease activity of S...

متن کامل

Preparation and melting of single strand circular DNA loops.

A method for preparation of single strand DNA circles of almost arbitrary sequence is described. By ligating two sticky ended hairpins together a linear duplex is formed, closed at both ends by single stranded loops. The melting characteristics of such loops are investigated using optical absorbance and NMR. It is shown by comparison with the corresponding linear sequence (closed circle minus t...

متن کامل

The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom

Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999